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Abstract. The spin structure of the matrix element for the reactions γ + N → Yc + D∗, where Yc =
Λ+
c (2285), Σc(2455) are charmed baryons with spin 1/2, and D∗(2010) is the vector charmed meson, can

be parametrized, in collinear regime, in terms of three independent scalar amplitudes, which are functions
of the photon energy Eγ , only. In the framework of an effective Lagrangian approach generalized to charm
photoproduction, we calculate the energy dependence of the differential cross-section, the density matrix
element of D

∗

, ρ11, the asymmetry Az in the collision of circularly polarized photons with polarized
nucleons, and the polarization of the produced Yc-hyperon, Pz, in the collision of circularly polarized
photons with unpolarized target. All these polarization observables either vanish or are large, in absolute
value, with a smooth Eγ-dependence, and differ for Λ+

c and Σc production.

PACS. 13.60.-r Photon and charged-lepton interactions with hadrons – 13.88.+e Polarization in interac-
tions and scattering – 14.40.Lb Charmed mesons – 14.20.Lq Charmed baryons

1 Introduction

In a previous paper [1] we analyzed the exclusive pro-
cesses of charm pseudoscalar meson D0 photoproduction,
γ + N → Yc +D, Yc = Λ+

c , or Σc. We consider here the
exclusive processes of charmed vector mesonD∗ photopro-

duction, γ+N → Yc+D
∗
, on proton and neutron targets.

No detailed theoretical analysis exists for such processes,
and up to now, experimentally, only an indirect evalu-
ation of their cross-section has been done. In ref. [2], an
attempt has been done to estimate the contribution of the

processes γ +N → Yc +D(D
∗
) to the asymmetry of the

collisions of a circularly polarized photon beam with a po-
larized target in γ+N→ open charm +X. It is well known
that such asymmetry is sensitive to the ∆G gluon contri-
bution to the nucleon spin [3]. In ref. [4] the D-exchange

contribution has been calculated for γ +N → Yc+D
∗
, in

the near-threshold region, considering the possible baryon
exchange as a background process.
Let us list some arguments to justify the interest in

exclusive charmed vector meson photoproduction:

– their contribution to the total cross-section is impor-
tant, especially in the near-threshold region;

a e-mail: etomasi@cea.fr

– the understanding of the reaction mechanisms requires
the deconvolution of these channels;

– these reactions naturally explain the particle-
antiparticle asymmetry in charmed particles photo-
production, at high energies;

– the polarization phenomena induced by the production
of vector mesons are new, interesting and measurable
(the D∗-meson is a self-analyzing particle, through the
angular dependence of the decay products in D∗ →
D + π, but this decay does not allow to access the
vector D∗-meson polarization);

– direct experimental data, concerning these reactions,
are expected soon, due to the higher luminosity of on-
going experiments, as COMPASS [5].

There are essential differences between the processes
of exclusive photoproduction of light vector mesons (ρ, ω,
φ or K∗) and heavy D∗ production. In the last case, the
diffractive mechanism is absent and the large mass of the
c-quark seems to justify the applicability of perturbative
QCD. However, there is no direct relation between the
photon-gluon fusion subprocess, γ + G → c + c and the
exclusive D∗ photoproduction. Therefore, QCD-inspired
models, like the effective Lagrangian approach (ELA), in
terms of hadronic degrees of freedom, as charmed baryons
and mesons, seem more appropriate. In such approach, it
is possible to predict the differential cross-section and all
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polarization observables in terms of a finite number of cou-
pling constants, of strong and electromagnetic nature —in
any kinematical condition. The same coupling constants
enter also in the calculation of other processes of associa-
tive charm production in πN , γN and NN collisons.
There are experimental data about inclusive D∗ pho-

toproduction, γ+ p→ D∗+X or e−+N → e−+D∗+X
up to HERA energies [6]. The smallest energy, where D∗

photoproduction has been observed is Eγ = 20GeV, at
SLAC [7]. Typically, D∗ production is the main channel
for γ +N → charm +X [6–12], so that the ratio between
the vector (V ) and the total D∗ contribution to the to-
tal cross-section is in agreement with the spin quark rule
V/(P + V ) ' 0.75, where P is the pseudoscalar contri-
bution. The relative role of the charged and neutral D-
meson photoproduction depends, on one side, on the rela-
tive cross-sections for the D∗± and D∗0 photoproduction,
and, on another side, on the branching ratio for the decays
D∗ → D + π (for different charge combinations).
We consider here the exclusive processes γ + N →

Yc + D
∗
, in case of collinear kinematics, where helicity

conservation and the P -invariance of electromagnetic in-
teraction allow three amplitudes, only, which are func-
tions of a single kinematical variable, the photon energy
Eγ . Note, in this respect, that generally the processes

γ + N → Yc + D
∗
are characterized by a set of twelve

independent amplitudes, which are complex functions of
two kinematical variables. Therefore, the theoretical anal-
ysis is largely simplified in collinear kinematics.
This paper is organized as follows. In sect. 2 the spin

structure of the collinear matrix element is given in terms
of three amplitudes, which allows to develop a general and
model-independent formalism for the analysis of polariza-
tion phenomena. The expressions for the different possible
pole contributions, in the framework of ELA approach, are
derived in sect. 3. The strong and electromagnetic cou-
pling constants as well as the form factors are discussed
in sect. 4. Numerical predictions for the differential cross-
section, the single- and double-spin polarization observ-
ables, as functions of Eγ , are given in sect. 5. Concluding
remarks are given in sect. 6. The appendix contains the
explicit expressions of the collinear amplitudes.

2 Collinear amplitudes and polarization

phenomena

We consider here the processes γ+N → Yc+D
∗
, Yc = Λ+

c ,

or Σc, D
∗
= D

∗0
or D

∗−
, in collinear regime, i.e. for θ = 0

or π, where θ is the D
∗−
production angle in the reaction

CMS. The reasons of this choice are the following:

– the differential cross-section, dσ/dt, as a rule, is maxi-
mal in the forward direction (t is the momentum trans-
fer squared);

– the total helicity of the interacting particles is con-
served, for any reaction mechanisms, which implies
that the spin structure of the matrix element and the
polarization phenomena are highly simplified.

At high photon energies, collinear kinematics is very
near to the condition of forward detection of the running
experiments, such as COMPASS [5].
Taking into account the P -invariance of the electro-

magnetic interaction of charmed particles and the he-
licity conservation, one can write the following general
parametrization of the matrix element for any process

γ + N → Yc + D
∗
, in collinear kinematics (which holds

for any reaction mechanism):

M
(

γN → YcD
∗)

= χ†2

[

ε ·U∗f1 + iσ · k̂ε× k̂ ·U∗f2

+iσ · ε× k̂U∗ · k̂f3
]

χ1 , (1)

with the following notations:

– χ1 and χ2 are the two-component spinors of the initial
nucleon and the produced Yc-hyperon,

– ε and U are the three-vector of the photon and of the

D
∗
-meson polarizations, with the condition ε · k̂ = 0,

– k̂ is the unit vector along the three-momentum of γ;
– fi, i = 1–3, are the collinear amplitudes, which are
generally complex functions of a single variable, Eγ .

Using this parametrization, one can find for the differential
cross-section:

dσ

dt
= N

[

|f1|
2 + |f2|

2 +
E2
v

m2
v

|f3|
2

]

, (2)

where N is a normalization factor, Ev (mv) is the energy
(mass) of the produced vector meson:

Ev =
s+m2

v −M
2

2W
, s =W 2 = m2 + 2mEγ , (3)

where m (M) is the nucleon (Yc-hyperon) mass, Eγ is the
photon energy in the laboratory (Lab) system.
The D∗-mesons, produced in collinear kinematics, are

generally polarized, (with tensor polarization) even in col-
lisions of unpolarized particles:

Dρ11 =
|f1|

2 + |f2|
2

2
, D = |f1|

2 + |f2|
2 +

E2
v

m2
v

|f3|
2 (4)

with the normalization condition: 2ρ11 + ρ00 = 1. The
non-diagonal elements for ρab are equal to zero, in
collinear regime.
All the other single-spin polarization observables, such

as the ΣB-asymmetry (with linearly polarized photons in-
teracting with unpolarized target), the analyzing power A
(induced by polarized nucleon target) and the final Yc po-
larization (in the collision of unpolarized particles), van-
ish for the considered reactions, for any photon energy
and for any reaction mechanism, due to the axial symme-
try of collinear kinematics. However, an interesting set of
double-spin polarization observables can be measured, for

the reactions γ +N → Yc +D
∗
:

– The asymmetry Az in the collision of circularly polar-
ized photon beam, with a polarized nucleon target, in

the k̂-direction, which we choose as the z-direction,

AzD = −2Re f1f
∗
2 − |f3|

2 E
2
v

m2
v

. (5)
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Due to the P -invariance of the electromagnetic inter-
action, the asymmetry for a linearly polarized photon
beam vanish, even in collisions with polarized target.
In the same way, the linear photon polarization cannot
induce any polarization of the emitted Yc-hyperon (for
simplicity, we will assume here 100% photon polariza-
tion, with helicity λγ = +1).

– In the collision of circularly polarized photons with un-
polarized target, the Yc-hyperon can be longitudinally
polarized, and the polarization Pz is

PzD = −2Re f1f
∗
2 + |f3|

2 E
2
v

m2
v

. (6)

– The non-zero components of the depolarization tensor,
Dab, describing the dependence of the b-component of
the Yc polarization on the a-component of the target
polarization can be written as

DzzD = |f1|
2 + |f2|

2 − |f3|
2 E

2
v

m2
v

,

DxxD = DyyD = |f1|
2 − |f2|

2.

(7)

One can see that these observables are not independent,
and the following relations hold, at any photon energy and
for any reaction mechanism:

Dzz = −1 + 4ρ11 , Az − Pz = −2 + 4ρ11 . (8)

These formulas show which experiments are necessary to
determine the moduli of the collinear amplitudes, |fi|:

|f1|
2 =

(

ρ11 +
1

2
Dxx

)

D,

|f2|
2 =

(

ρ11 −
1

2
Dxx

)

D, (9)

|f3|
2 E

2
v

m2
v

= (1− 2ρ11)D.

Therefore, the measurements of ρ11 and Dxx, together
with the differential cross-section dσ/dt, can be consid-
ered as the first step of the complete experiment for any
collinear reaction of vector meson photoproduction on a
nucleon, such as, for example:

γ +N −→ N + V, V = ρ, ω, φ,

γ +N −→ Y +K∗, Y = Λ- or Σ-hyperon, (10)

γ +N −→ Yc +D
∗
.

Further experiments are necessary to determine the
relative phases of the collinear amplitudes fi. For example,
the relation

(Pz +Az)D = −4Re f1f
∗
2 (11)

allows to determine the relative phase, δ1− δ2, of the am-
plitudes f1 and f2, more exactly, cos(δ1−δ2). T -odd polar-
ization observables are more sensitive to the small relative
phase, being determined by sin(δ1 − δ2). The simplest of

these observables, in collinear regime, is the D∗ tensor po-
larization, induced by polarized target. The corresponding
density matrix can be parametrized as follows:

ρab(P ) = iρ1εabcPc + iρ2εabck̂ck̂ ·P

+ρ3

[

k̂a
(

k̂×P
)

b
+ k̂b

(

k̂×P
)

a

]

, (12)

where ρi, i = 1–3, are real coefficients, quadratic functions
of the collinear amplitudes and P is the pseudovector of
the target polarization:

ρ1D = Re f1f
∗
3 ,

ρ2D = Re
(

− f1f
∗
2 − f1f

∗
3 + f2f

∗
3

)

, (13)

ρ3D = Im (f1 − f2)f
∗
3 .

Note, in this connection, that the antisymmetrical part
of ρab(P ), which is characterized by the coefficients ρ1

and ρ2, describes D
∗ production with vector polariza-

tion. But this polarization cannot be measured through
the main decays of D∗: D∗ → D + π, D∗ → D + γ, and
D∗ → D + e+ + e− [13]. The coefficient ρ3 characterizes
the dependence of theD∗ tensor polarization on the target
polarization, generating the following angular distribution
for the decay products in D∗ → D + π:

W (θ, φ) ' sin 2θ sinφ, (14)

where θ and φ are the polar and azimuthal angles of the
π-meson (in D∗ rest frame) relative to the polarization

plane, which is defined by k̂ and P.
Linear photon polarization can also induce polarized

D∗-mesons, with the following non-zero elements of den-
sity matrix:

ρ
(1)
11 D =

1

2

(

|f1|
2 + |f2|

2
)

,

ρ
(1)
1−1D =

1

2

(

|f1|
2 − |f2|

2
)

, (15)

This represents the complete analysis of all possible
double-spin polarization observables, for the reactions γ+

N → Yc +D
∗
, in collinear kinematics.

3 The matrix elements

In a previous work [1], we considered the processes of pho-
toproduction of pseudoscalarD-mesons, in γ+N → Y+D.

In this section we analyze the processes γ+N → Yc+D
∗
,

following a similar scheme. These two classes of reactions
have common properties with the reactions of associa-
tive strange-particles production, γ + N → Y + K and
γ + N → Y + K∗, where Y = Λ and Σ, strange hy-
perons, even if the masses of the produced particles are
very different. All these processes have a non-diffractive
nature due to the quantum numbers in t-channel, dif-
ferent from the vacuum. It is often assumed that open
charm photoproduction occurs through the mechanism
of the photon-gluon fusion, γ + G → c + c [3], even in
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(a) (b) (c)

Fig. 1. The pole mechanisms for γ +N → Yc +D∗.

the near-threshold region as the applicability of QCD for
the considered processes may be justified by the large c-
quark mass (mc ' 1.5GeV). But, if the elementary pro-
cess γ +G→ c+ c can be reliably calculated [3], the ap-

plication to the exclusive processes γ +N → Yc +D(D
∗
)

is not straightforward.

The process γ + N → Yc + D(D
∗
) at large photon

energy and at small momentum transfer (i.e. for forward
production), can be analzed as the photoproduction of
pseudoscalar (vector) light mesons (π, K) in similar kine-
matical conditions. In other words, the exclusive processes
can be described in terms of non-perturbative models, like
any binary processes at large values of the total energy s
and of small momentum t, such as Regge-pole description.
So, the large mass of c-quarks results in a higher thresh-
old but does not necessarily imply a reaction mechanism of
QCD nature. In this framework, the mechanism based on
the elementary subprocess γ+G→ c+c can be viewed as
D-meson exchange in t-channel, for the process γ +N →
Yc+D

∗
(fig. 1a). Two other baryon exchanges, the s- and

u-contributions, figs. 1b and c, have to be taken into ac-
count to insure the gauge invariance of the total matrix
element: the conservation of electromagnetic current is a
very important property of any photoproduction process.
The matrix element corresponding to these diagrams

can be written as follows:

M =Mt(D) +Mt(D
∗) +Ms +Mu , (16)

where the indices t, s or u indicate the contributions of
the corresponding channels.
The exchange by pseudoscalar mesons is described by

the following matrix element:

Mt(D) = ie
κ(D∗Dγ)

mv(t−m2
D)
gNYcD

×u(p2)γ5u(p1)εµναβεµkνU
∗
αqβ , (17)

where κ(D∗Dγ) is the transition magnetic moment de-
scribing the electromagnetic decay D∗ → D + γ, gNYcD

is the coupling constant for the vertex N → Yc + D,
εα(Uα) is the four-vector of the photon (D

∗-meson) po-
larization, mD is the mass of the pseudoscalar D-meson,
t = (k − q)2 = (p1 − p2)

2. The notation of the particle
four-momenta is indicated in fig. 1a.
The constant κ(D∗Dγ) determines the width of the

radiative decay D∗ → Dγ, through the following formula:

Γ (D∗ → Dγ) = ακ2(D∗Dγ)
mv

24

(

1−
m2

D

m2
v

)3

, (18)

where α = e2/(4π) = 1/137. Evidently, the corresponding
width does not allow to find the sign of κ(D∗Dγ), which

is important for the calculation of possible interference
phenomena, for the above-quoted observables. However,
the quark model gives indications on this sign, as we will
discuss later.
The matrix elementMt(D

∗), corresponding to vector
D∗-exchange can be written as

Mt(D
∗) =

e

t−m2
D

u(p2)

[

γαg1 + g2
σανQν

m+M

]

u(p1)

×

(

−gαβ +
QαQβ

m2
v

)

Jβ , (19)

Jβ=−2ε · qU
∗
βe
(

D
∗)

+κ
(

D
∗)

[εβk · U
∗−κβε · U

∗]+(. . .)
(20)

with the following notations:

– e(D∗) and κ(D∗) are the electric charge and the

anomalous magnetic moment of the produced D
∗
-

meson, e(D∗0) = 0, e(D∗−) = −1;
– Q = p1 − p2 is the four-momentum of the virtual D

∗-
meson (fig. 1a);

– g1 and g2 are the vector and tensor coupling constants

for the vertex N → Yc +D
∗
.

The term (. . .) in eq. (20) denotes the possible contri-
bution due to the anomalous quadrupole moment of D∗,
which is generally different from zero, even for the neutral
D∗-meson due to the charm content of this meson. For
the same reason, κ(D∗0) 6= 0. All these electromagnetic
constants are not known experimentally, therefore we will
neglect in our calculations possible contributions from the
D∗-quadrupole moment.
The one-nucleon exchange is described by the following

matrix element:

Ms =
e

s−m2
u(p2)

(

g1Û + g2
Û q̂

m+M

)

×
(

k̂ + p̂1 +m
)

[

ε̂e(N)−
κ(N)

2m
ε̂k̂

]

u(p1), (21)

where s = (k+p1)
2, e(N) and κ(N) are the electric charge

and the anomalous magnetic moment of the target nu-
cleon, e(n) = 0, e(p) = 1, κ(n) = −1.91 and κ(p) = 1.79.
Finally, the matrix element due to the exchange of

Yc-hyperon is

Mu =
e

u−M2
u(p2)

[

ε̂e(Y )−
κ(Y )

2M
ε̂k̂

]

×
(

p̂2 − k̂ +M
)

(

g1Û + g2
Û q̂

m+M

)

u(p1), (22)

where u = (k−p2)
2, e(Y ) and κ(Y ) are the electric charge

and the anomalous magnetic moment of the Yc-hyperon:
e(Y ) = +1 for Λ+

c and Σ+
c , e(Y ) = +2 for Σ++

c and
e(Y ) = 0 for Σ0

c . The anomalous magnetic moment κ(Y )
is experimentally unknown for any charmed hyperon.
Let us briefly discuss the gauge invariance of the sug-

gested model. All contributions induced by the particle
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magnetic moments, κ(D∗Dγ), κ(D∗), κ(N), and κ(Y ) are
automatically gauge invariant, independently on the nu-
merical value of these quantities. For the terms of the ma-
trix element, which are induced by the electrical charges of
the particles, the corresponding divergency of the electro-
magnetic current is determined by the following formula:

∆M=M
(

γN→YcD
∗) ε→k
= e

[

e(N)−e
(

D
∗)

−e(Y )
]

u(p2)

×

(

g1Û+g2
Û q̂

m+M

)

u(p1)+∆M
′, (23)

∆M′=u(p2)

[

g1
m−M

m2
v

U · k+g2
σαβUαkβ
m+M

]

u(p1). (24)

From the conservation of electric charge in the considered

reactions, e(N) = e(D
∗
) + e(Y ), it follows that ∆M =

∆M′ 6= 0, i.e. this part of the matrix element violates the
gauge invariance1.

In conditions of collinear kinematics, however, the sit-
uation with gauge invariance is essentially simplified. To
show this, let us consider an “improved” matrix element,
made gauge invariant by the following substitution:

M−→M′ =M−
ε · p

k · p
∆M′, (25)

where p is a four-vector, built generally as a linear combi-
nation of the particle four-momenta:

p = ak + bp1 + cq, (26)

where the coefficients a, b, and c are arbitrary functions of
the Mandelstam variables s and t. With this transforma-
tion the resulting matrix element,M′, is gauge invariant.
But in collinear kinematics ε ·p = 0, for any choice of a, b,
and c, so, when ε is transverse, ε ·k = 0, we findM′ =M.
Therefore, all calculations using this transverse gauge con-
dition, which holds in the reaction CMS, can be done on
the basis of eqs. (17), (20), (21), and (22), for different
matrix elements, without violating gauge invariance.

Note, in this respect, that the contribution to the am-
plitudes fi which is proportional to the D

∗ electric charge,
e(D∗), vanishes in collinear kinematics, see eq. (20).

The explicit expressions for the collinear amplitudes
fi, i = 1, 2, 3, corresponding to the different matrix ele-
ments, see eqs. (17), (20), (21), and (22), are given in the
appendix. In the considered model, these amplitudes are
real functions of Eγ .

1 The g1-ccontribution to ∆M′ can be cancelled by the
“catastrophic” diagram. The corresponding predictions [14] for
the cross-sections of the processes γ+N → Yc+D(D

∗

), in the
threshold region, are in contradiction with the experimental
data [15].

4 The electromagnetic coupling constants

and the form factors

We consider here the six possible binary reactions of
D∗ photoproduction:

γ + p −→ Λ+
c +D

∗0
, γ + n −→ Λ+

c +D∗−,

γ + p −→ Σ+
c +D

∗0
, γ + n −→ Σ+

c +D∗−, (27)

γ + p −→ Σ++
c +D∗−, γ + n −→ Σ0

c +D∗0 ,

and calculate the Eγ-dependence of the following observ-
ables: dσ/dt, ρ11, Az and Pz for each of the reactions (27).
The corresponding collinear amplitudes are linear

functions of the strong coupling constants for the two ver-

tices, N → Yc +D and N → Yc +D
∗
. So, taking into ac-

count the isotopic invariance of the strong interaction, it is
necessary to know at least six independent coupling con-
stants:

g1Σ ≡ g1
(

pΣ+
c D

∗0)
,

g1Λ ≡ g1
(

pΛ+
c D

∗0)
,

r12(Σ) ≡ g2
(

pΣ+
c D

∗0)
/g1
(

pΣ+
c D

∗0)
,

r12(Λ) ≡ g2
(

pΛ+
c D

∗0)
/g1
(

pΛ+
c D

∗0)
,

r(Σ) ≡ g
(

pΣ+
c D

0)
/g1
(

pΣ+
c D

∗0)
,

r(Λ) ≡ g
(

pΛ+
c D

0)
/g1
(

pΛ+
c D

∗0)
,

So, the two possible processes of Λ+
c photoproduction,

γ + N → Λ+
c + D

∗
, can be described by a set of three

coupling constants:

g1Λ, r12(Λ), and r(Λ)

and the four possible reactions of Σc production, γ+N →
Σc+D

∗
, can be described by another set of coupling con-

stants:

g1Σ , r12(Σ), and r(Σ).

All polarization observables depend on two ratios only,
r12(Y ) and r(Y ), and are independent on the electric
charges of the initial nucleon and the produced charmed
particles, due to isotopic invariance. The coupling con-
stant g1Λ(g1Σ) is important for the prediction of the ab-
solute value of the differential cross-section, with the fol-
lowing isotopic relations:

g2
1

(

pΛ+
c D

∗0)
= g2

1(nΛ
+
c D

∗−),

g2
1

(

pΣ++
c D∗−

)

= g2
1

(

nΣ0
cD

∗0)
= 2g2

1

(

pΣ+
c D

∗0)
=

= 2g2
1

(

nΣ+
c D

∗−)

. (28)

But the electromagnetic properties of the nucleon and
the charm particles, which strongly depend on the elec-
tric charge of the particles, induce large isotopic effects,
i.e. a strong dependence on the type of reaction. So, for
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Table 1. Magnetic moments and anomalous magnetic mo-
ments (κ(Y ) = µ(Y ) − e(Y )) of charmed baryons, in units of
µN , in the framework of the quark model.

Particle µ(Y ) κ(Y )

Λ+
c 0.42 −0.58

Σ+
c 0.45 −0.55

Σ++
c 2.33 0.33

Σ0
c −1.44 −1.44

the numerical estimations it is necessary to know the fol-
lowing magnetic moments of charmed baryons and D∗ →
D + γ electromagnetic transitions: κ(Yc), κ(D

∗−D∗−γ),
and κ(D∗0D0γ).
The quark model gives prescriptions which relate the

magnetic moments of the charmed hyperons to the mag-
netic moments of the charmed quarks, µq, q = u, d, or c:

µ
(

Λ+
c

)

= µc ,

µ
(

Σ++
c

)

= (4µu − µc)/3, (29)

µ
(

Σ+
c

)

= (2µu + 2µd − µc)/3,

µ
(

Σ0
c

)

= (4µd − µc)/3.

The magnetic moments of point-like quarks are deter-
mined by the electric charge of the quark and its mass, so

µq =
Qq

2mq

, (30)

where mq is the “constituent quark” mass. From the anal-
ysis of the nucleon and the usual hyperons magnetic mo-
ments, one finds [16]:

µu = 1.852 µN , µd = −0.9722 µN , (31)

where µN is the nucleon magneton. Using these values,
one has mu = 338MeV, and md = 322MeV. Therefore,
the current value of mc = 1.5GeV for the charm quark
results in µc = 0.42 µN , and in the values of the magnetic
moments and anomalous magnetic moments reported in
table 1.
For completeness, let us mention that other prescrip-

tions exist for the calculation of κ(Y ): SU(4) symme-
try [17], bag models [18], different versions of quark
model [19], dispersion sum rules [20], etc.

In principle, the reactions γ+N → Yc+D
∗
can be con-

sidered a possible source of information on charm hyperon
magnetic moments. In the literature, another possibility
of measuring the magnetic moment of Λ+

c , based on the
precession in bending crystals has been discussed [21], but
this method cannot be applied to the Σc-hyperons, which
main decay, Σc → Λc + π occurs through the strong in-
teraction.
The quark model can also be used for the prediction of

the transition magnetic moments (again in terms of quark
magnetic moments):

κ(D∗−D−γ)

κ(D∗0Dγ)
=
µc + µd
µc + µu

' −0.24.

Taking the existing experimental data about D∗0,
Br(D+0 → D+γ) = (1.6 ± 0.4)%, and ΓT (D

∗+) = (96 ±
22) keV [16], one can find from eq. (18): |κ(D∗−Dγ)| ' 1.
Moreover, the quark model allows to fix the sign of this
magnetic moment, as κ(D∗−Dγ) > 0.
This allow us to fix all the necessary electromagnetic

constants, i.e. the absolute values of the magnetic mo-
ments and their signs. The signs, in particular, are very
important in the analysis of the isotopic effects for these
reactions, which are large, in the present model, near
threshold, due to the strong interference of the different
contributions.
Finally, to fix the strong coupling constants, we use,

as in ref. [1], the existing information on the correspond-
ing coupling constants for strange particles, which can be
determined from the analysis of the data on photo- and
electroproduction of Λ- and Σ-hyperons on protons. We
will take the following values [22]:

g1(NΛK
∗) = −23.0, r12(Λ) = 2.5,

g1(NΣ
0K∗) = −25.0, r12(Σ) = −1.0, (32)

g2
KΛN/4π = 10.6, g2

KΣN/4π = 1.6,

with gKΛN < 0 and gKΣN > 0 in agreement with SU(3)
constrains. The same holds also for K∗-coupling con-
stants. Using SU(4) symmetry, i.e. the substitution s→ c,
one can find from (32) the necessary coupling constants,
for charm particles.
The last problem of the model to be discussed is

the parametrization of the phenomenological form fac-
tors, which are important ingredients of ELA approaches
and are usually introduced for the pole contributions [23,
24]. At each vertex, for D- and D∗-exchanges, one can
parametrize the form factor as

F1,2(t) =
Λ2

1,2 −m
2
D

Λ2
1,2 − t

, F1,2

(

t = m2
D

)

= 1, (33)

where the index 1(2) corresponds to the electromagnetic
(strong) vertex and Λ1,2 is the corresponding cut-off pa-
rameter. The baryon contributions, eqs. (21) and (22),
have to be modified by the following form factors:

FN (s) =
Λ4
N

Λ4
N + (s−m

2)2
, for s-channel,

FY (u) =
Λ4
Y

Λ4
Y + (u−m

2)2
, for u-channel, (34)

where ΛN and ΛY are the corresponding cut-off parame-
ters, generally different from Λ1,2.
Let us note that the introduction of these form factors

violates the gauge invariance of that part of the matrix
element, M, which is determined by the electric charges
of the participating hadrons. Again, let us mention here
that in case of collinear kinematics, the non-conserving
contributions cancel for the transverse gauge of the photon
polarization, as one can see from the substitution (25).
It follows, that in collinear regime, we can take the

parametrizations (33) and (34), with a different form
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Fig. 2. Reduced differential cross-section, as a function of Eγ ,
for γ + p → Λ+

c + D∗0 (solid line), and γ + p → Σ++
c + D∗−

(dashed line).

factor for each diagram and with independent values of
the cut-off parameters, without violation of the gauge
invariance.

5 Discussion of numerical predictions

Using the expressions for the collinear amplitudes fi,
i = 1–3, (see appendix) and the numerical values for
the strong and electromagnetic couplings given above,
we can predict the Eγ-behavior of the differential cross-
section, dσ/dt and of some polarization observables for the
collinear regime. We will consider, more exactly, only for-
ward production. In this kinematics, the contributions of
baryonic exchanges are negligible, rapidly decreasing with
energy, in comparison with t-channel contributions due,
on one side, to the effect of the two form factors, FN (s)
and FY (u), and, on another side, to the relative size of the
t, s, and u propagators. Therefore, in the numerical esti-
mations, the t-channel contribution dominates. Assuming,
for simplicity, a common form factor for the D+D∗ con-
tributions:

F (t) =

(

Λ2 −m2
D

Λ2 − t

)2

,

corresponding to Λ1 = Λ2 = Λ, we take Λ as a free pa-
rameter, to be adjusted on the data.
For an exponential t-dependence of the cross-section,

for γ +N → Yc +D
∗
processes:

dσ

dt
=

(

dσ

dt

)

θ=0

eb(t−tmax),

with tmax = m2
v−2|k|(Ev−|q|) (q is the three-momentum

of the produced D
∗
), one can find for the total cross-

section:

σ(γN → YcD
∗) =

1

b

(

dσ

dt

)

θ=0

.

Fig. 3. Different polarization observables: asymmetry Az

(top), polarization Pz (center) and ρ11 (bottom), for the six

considered reactions as a function of Eγ : γ + p → Λ+
c + D

∗0

(solid line), γ + p → Σ+
c + D

∗0
(dashed line), γ + p →

Σ++
c + D∗− (dotted line), γ + n → Λ+

c + D∗− (dash-dotted
line), γ + n→ Σ+

c +D∗− (thick solid line), γ + n→ Σ0
c +D∗0

(thick dashed line).

Without direct experimental information about the cross-

section for the processes γ + N → Yc + D
∗
, we take a

conservative assumption:

σ
(

γN → YcD
∗)
' 0.1σT (γN → open charm),

in the interval Eγ = 100–200GeV. For b ' 5GeV−2, ac-
cording to the analysis [11], we find that
(

dσ

dt

)

θ=0

' bσT (γN → open charm) ' 250 µbGeV
−2,

(35)
at Eγ = 200GeV. Then, we fix Λ ' 2.5GeV, in agree-
ment with the value previously used for the calculation
of associative charm production, N + N → N + Yc +
D, near threshold [23,24]. The differential cross-section,
dσ/dt (more exactly, the reduced differential cross-section,
1/g2

1 dσ/dt) is shown as a function of Eγ , in fig. 2,
for two reactions, γ + p → Λ+

c + D
∗0
(solid line) and

γ + p → Σ++
c + D∗− (dashed line). Note that the re-

duced cross-section does not depend on the constant g1,
which is different for the different reactions. Therefore, we
report the results for two reactions, only.
One can see that, in the considered model, the Λc pro-

duction has the largest reduced cross-section. The fact
that all four reactions, γ + N → Σc + D, are one or-
der of magnitude smaller, is due to the difference between

the values of r12(Y ) for the N → ΛcD
∗
and N → ΣcD

∗

vertices: the “magnetic” combination g1 + g2 of the cor-
responding coupling constants cancels for r12(Σ) = −1.
This is also the reason of the difference of the polariza-
tion observables for Λc and Σc photoproduction (fig. 3).
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Note that all polarization observables do not depend on
the form factor F (t) and on the coupling constant g1.
However, the absolute values of the cross-section for

any process γ+N → Yc+D
∗
, calculated with the coupling

constants g1, eq. (32), are too large, in comparison with
the expectation (35). This means that SU(4) symmetry
is strongly violated, with respect to these constants, in
agreement with a previous observation [4].
The density matrix element is almost independent of

energy (fig. 3c), and ρ11 ' 0.5 for γ + N → Λc + D
∗
,

whereas ρ11 ≤ 0.2 for γ + N → Σc + D
∗
. The maximal

value of ρ11 produces a sin
2 θ-distribution of the produced

D-meson, through the decay D∗ → D + π (θ is the an-
gle between the k-direction and the direction of the D-
meson three-momentum in the D∗ rest system). Such θ-
dependence results in a depletion of D-meson production
at small angles, which should be observed, for example, in
the COMPASS experiment.
The large (in magnitude) and negative values of the

asymmetry Az, for γ + N → Λ+
c + D

∗
, are near the

limiting value Az = −1; more exactly, |Az| ≥ 0.8, for
Eγ ≤ 100GeV.
If one considers this reaction as a background for the

PGF mechanism, one can estimate the effect of this result
on the extraction of ∆G. The PGF asymmetry, APGF, is
predicted by perturbative QCD, on the basis of the hard
subprocess γ + G → c + c [3], and can be related to the
gluon contribution to the nucleon spin. The contribution

of the exclusive process γ+N→ Yc+D
∗
to the asymme-

try, can be parametrized as follows:

A(γN→ charm +X)

=
APGF +RAz

(

γN → YcD
∗)

1 +R
, (36)

where R = σ(γN → YcD
∗
)/σ(γN → charm + X), ne-

glecting, for simplicity, other sources of background due
to additional channels of charm particle photoproduction.
In case of R¿ 1, we can write

A(γN→ charm +X) = APGF +∆A,

∆A = R
[

Az

(

γN → YcD
∗)

−APGF

]

. (37)

One can see that in case of opposite signs of the two asym-
metries, the “dilution factor”, 1/(1 + R) and the back-
ground Az-contribution, due to the channel γ + N →
Yc + D

∗
, act coherently in increasing the correction ∆A

(in absolute value). For example, if R ' 0.1, APGF ' 0.3

and Az(γN → YcD
∗
) ' −1, one can find ∆A ' −0.13,

which represents a correction δA/APGF ' 43%. This is a
large correction, even for a relatively small contribution of
the considered exclusive channel to the total cross-section.
The energy behavior of the collinear amplitudes, f1, f2

and f3Ev/mv, for the different channels γ + N → YcD
∗
,

is shown in fig. 4, taking into account the form factors for
the s+u+ t contributions. Due to the fact that the bary-
onic contributions are small, the relative values of these

Fig. 4. Collinear amplitudes f1 (solid line), f2 (dashed line),
and f3Ev/mv (dotted line), as functions of Eγ for γ + p →
Λ+
c +D∗0 (a) and γ + p→ Σ++

c +D∗− (b).

amplitudes are independent of the form factor. The spe-
cific factor, Ev/mv, which has been introduced for the
amplitude f3, results from the relativistic description of
the D∗-meson polarization properties. The collinear am-
plitude f3 describes the D

∗ production with longitudinal

polarization,U·k̂ 6= 0, and the z-component of such polar-
ization has to be equal to Ev/mv, due to the orthogonality
condition, U · q = 0.
Note that the different contributions, taken into ac-

count in the present model, have very simple and trans-
parent polarization properties, especially in collinear kine-
matics. For example, the pseudoscalar D-exchange, which
induces a single collinear amplitude, f2, results in the fol-
lowing values of the polarization observables:

ρ11 = 1/2, Az = Pz = 0, Dzz = 1, Dxx = Dyy = 0. (38)

These numbers reflect the fact that a zero-spin exchange
does not transfer any information on the polarization from
the electromagnetic to the strong vertex. The D∗-vector
exchange, which is characterized by a non-zero anomalous
magnetic moment κ(D∗), results in f2 = 0. This means
that the D ⊗D∗-interference vanishes for dσ/dt and ρ11.
Note that Az = −Pz for D

∗-exchange only, independently
of the photon energy Eγ . Therefore, the inequality Az +
Pz 6= 0 characterizes the size of the D ⊗D

∗-interference,
being sensitive to the sign of the ratio r(Y ).
The N -exchange in s-channel gives f1 = f2, which

results in Az = −1, independently of the reaction chan-
nel, photon energy and numerical values of the coupling
constants. This result follows from the helicity properties
of the s-channel, where the spin 1/2 in the intermediate
state forbids the helicity transition±3/2→ ±3/2, which is
characterized by the combination of collinear amplitudes
f1− f2. But ρ11 and Pz can take any value in the allowed
limits:

0 ≤ ρ11 ≤ 1/2, 0 ≤ |Pz| ≤ 1.
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Finally, for the u-channel contribution (with f1 =
−f2), the discussed polarization observables can take any
value, but Pz = −1, for all reactions and at any photon
energy.

Polarization phenomena depend strongly on the rela-
tive role of these contributions and may show large sensi-
tivity to the value of the strong and electromagnetic cou-
pling constants.

6 Conclusions

We considered the exclusive photoproduction of charmed

vector mesons, γ +N → Yc +D
∗
, in collinear kinematics,

where the differential cross-section is large and the spin
structure of the matrix element is essentially simplified.
We analyzed firstly the single- and double-spin polariza-
tion phenomena, in a general form, in terms of three inde-
pendent collinear amplitudes. The energy dependence of
these amplitudes has been predicted —for the six possible
processes— in a QCD-inspired model, which is the basis
of an effective Lagrangian approach. The strong-coupling

constants for the vertices N → Yc +D and N → Yc +D
∗

can be related through SU(4) symmetry with the corre-
sponding coupling constants for strange particles, i.e. for
the vertices N → Y + K and N → Y + K∗, Y = Λ or
Σ-hyperon, which are known from the analysis of exper-
imental data concerning photo- and electroproduction of
strange particles.

The electromagnetic characteristics of charmed parti-
cles, such as the magnetic moments of the charmed Yc-
hyperons and the transition magnetic moments for the
decays D∗ → D + γ, have been estimated in the frame-
work of the quark model.

As the baryonic exchanges (by N in the s-channel
and Yc in the u-channel) are negligible in the considered
model, the polarization observables are quite insensitive
to this form factor, and to the vector coupling constant

g1(NYcD
∗
) as well. Therefore, this model gives robust pre-

dictions for the polarization effects. The large and negative
values of the asymmetry Az (for the collision of a circularly
polarized photon beam with a longitudinally polarized nu-
cleon target) for Λ+

c production on proton and neutron
targets (which is a factor ten larger in comparison with
Σc production) can be a source of large systematic error
in the extraction of ∆G from γ +N → charm +X, even
in case of a relatively small cross-section of the considered
exclusive reactions.

A reasonable value for the cross-section of the consid-
ered processes can be obtained only for a smaller value
of the coupling constants g1(NYcD

∗), in comparison with
SU(4) predictions.

We thank the members of the Saclay group of the COMPASS
collaboration, for interesting discussions and useful comments.

Appendix A

Here we give the expressions for the scalar amplitudes fi,
i = 1–3:

fi = fi,t(D) + fi,t(D
∗) + fi,s + fi,u ,

where the indices s, u, and t correspond to s-, u-, and
t-channel contributions.

– t-channel (D contribution):

f1,t(D)=f3,t(D)=0,

f2,t(D)=κ
(

D∗0Dγ
)g(Yc)

2mv

t−m2
v

t−m2
D

(

1−Q−
2m

W +m

)

;

– t-channel (D∗ contribution):

f1,t(D
∗) =

κ(D∗)

2

(

m−M

m2
v

+
r12

m+M

)

+κ(D∗)WRD

[

(1 + r12)(1 +Q)− r12
W +m

M +m

]

,

f2,t(D
∗) = 0,

f3,t(D
∗)=−

κ(D∗)

2
(1+r12)

×RD [W−m+ (W+m)Q] ,

with RD =
Ev+q

m2
v
(W−m) ;

– s-channel:

f1,s=f2,s=
e(N)

W+m
(1+Q)+

κ(N)

2m

×

(

Q−1+
2m

W −m

)

−
e(N)

W+m

r12
m+M

× [(W−m)−Q(W+m)] +
κ(N)

2m

r12
m+M

×

[

(W−m)

(

1+
2m

W+m

)

+Q(W +m)

]

,

f3,s=
e(N)

W+m
(−1+Q)

(

1−
q

q0

)

+
κ(N)

2m

{

Q+1−
2m

W −m

+

[

1+

(

1−
2m

W+m

)

Q

]

q

q0

}

+
e(N)

W+m

r12
m+M

(

1−
q

q0

)

× [(W−m) +Q(W+m)] +
κ(N)

2m

r12
m+M

−

{

(W+m)Q− (W−M)

(

1−
2m

W+m

)

×

[

W−m−Q(W+m)

(

1−
2m

W+m

)]

q

q0

}

.
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– u-channel:

f1,u=f2,u=Ru

{

e(Y )+
κ(Y )

2M

[

M−(q+E2)
m

W

]

+e(Y )
r12

m+M
(q0−q)

m

W

+
κ(Y )r12
M(m+M)

(q0 + q)

×

[

−q−E2+m
m

W

(

q0−q

q0+q

)]}

f3,u=Ru

{

e(Y )
m

W

(

1−
q

q0

)

κ(Y )

2m

[

−(q+E2)

(

1+
q

q0

)

+m
M

W

(

1−
q

q0

)]

+e(Y )
r12

m+M

m2
v

q0

+
κ(Y r12)

M(m+M)
(q+q0)

[

M−(q+E2)
m

W

(

q0−q

q0+q

)

−

(

M+(q+E2)
m

W

(

q0−q

q0+q

))

q

q0

]}

with Ru = (1+Q)
W (E2−q)
M2(W+m) , Q =

q
E2+M

, E2 =
s+M2−m2

v

2w ,

and q0 =W − E2.

References

1. E. Tomasi-Gustafsson, M.P. Rekalo, Phys. Rev. D 69,
094015 (2004).

2. G.K. Mallot, J. Phys. G 25, 1539 (1999); M. Ryskin, E.
Leader, J. Phys. G 25, 1541 (1999).

3. L.M. Jones, H.W. Wyld, Phys. Rev. D 17, 759 (1978);
F. Halzen, D.M. Scott, Phys. Lett. B 72, 404 (1978);
H. Fritzsch, K.H. Streng, Phys. Lett. B 72, 385 (1978);

V.A. Novikov, M.A. Shifman, A.I. Vainstein, V.I. Za-
kharov, Nucl. Phys. B 136, 125 (1978) (Yad. Fiz. 27, 771
(1978)); J. Babcock, D.W. Sivers, S. Wolfram, Phys. Rev.
D 18, 162 (1978).

4. M.P. Rekalo, E. Tomasi-Gustafsson, Phys. Rev. D 65,
074023 (2002) and references herein.

5. COMPASS Collaboration (G. Baum et al.), CERN-
SPSLC-96-14.

6. ZEUS Collaboration (M. Derrick et al.), Phys. Lett. B 349,
225 (1995); H1 Collaboration (S. Aid et al.), Nucl. Phys.
B 472, 32 (1996).

7. SLAC Hybrid Facility Photon Collaboration (K. Abe et

al.), Phys. Rev. D 33, 1 (1986).
8. Photon Emulsion Collaboration (M.I. Adamovich et al.),

Phys. Lett. B 187, 437 (1987).
9. NA14/2 Collaboration (M.P. Alvarez et al.), Z. Phys. C

60, 53 (1993).
10. Tagged Photon Spectrometer Collaboration (J.C. Anjos et

al.), Phys. Rev. Lett. 62, 513 (1989).
11. K. Sliwa et al., Phys. Rev. D 32, 1053 (1985).
12. FOCUS Collaboration (J.M. Link et al.), Phys. Lett. B

566, 51 (2003).
13. T.M. Aliev, E. Iltan, N.K. Pak, M.P. Rekalo, Z. Phys. C

64, 683 (1994).
14. H. Rubinstein, L. Stodolsky, Phys. Lett. B 76, 479 (1978).
15. SLAC Hybrid Facility Photon Collaboration (K. Abe et

al.), Phys. Rev. D 30, 694 (1984).
16. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
17. M.P. Rekalo, Ukr. Fiz. J. 22, 1602 (1977).
18. S.K. Bose, L.P. Singh, Phys. Rev. D 22, 773 (1980).
19. S.N. Jena, D.P. Rath, Phys. Rev. D 34, 196 (1986).
20. M.J. Savage, Phys. Lett. B 326, 303 (1994).
21. V.M. Samsonov, Nucl. Instrum. Methods B 119, 271

(1996).
22. M. Guidal, J.M. Laget, M. Vanderhagen, Nucl. Phys. A

627, 645 (1997).
23. M.P. Rekalo, E. Tomasi-Gustafsson, Phys. Rev. C 67,

044004 (2003) and references herein.
24. A.M. Gasparyan, V.Y. Grishina, L.A. Kondratyuk, W.

Cassing, J. Speth, arXiv:nucl-th/0210018.


